A New Approach to HVAC Design: Benchmarking and the MLM (Most Likely Maximum) Method

Karl Brown

Deputy Director, California Institute for Energy Efficiency
University of California Office of the President
1333 Broadway (Suite 240) Oakland CA 94612
510/287-3330
Karl.Brown@ucop.edu

- Example 1: Laboratory Building Chiller Sizing
 - Design engineer estimate1,200 tons
 - Installed capacity600 tons
 - Actual maximum load300 tons
 - Typical load
 < 150 tons?</p>

- ◆ Example 2: Computer Science Building Chiller Sizing
 - Design engineer estimate?
 - Installed capacity400 tons
 - Actual maximum load200 tons
 - Typical load< 100 tons

- Example 3: Laboratory Building Boiler Sizing
 - Design engineer estimate*18 modular boiler units
 - Installed capacity11 modular boiler units
 - Actual maximum load7 modular boiler units
 - * original estimate by energy consultant was 8 boiler units

- Example 4:Office BuildingFan Sizing
 - Design engineer estimate varying size VAV
 - Installed capacity
 each system one size smaller
 - Actual maximum load25-65%

- Example 5: Laboratory Building Chiller Sizing
 - Original estimate500 tons
 - Installed capacity500 tons
 - Actual maximum load*50 tons

- Example 6:Electronics Fab ExpansionChiller Sizing
 - First design engineer opinion major plant expansion
 - Second opinion
 existing capacity adequate
 - Actual maximum load handled by existing capacity

*equipment removed from building program before design complete

Underlying Problem:

Lack of feedback from operating experience to the design process

Benchmarking and Monitoring Closing the Loop for Infrastructure and Building Design

Building (Laboratory) Design Benchmarking and Monitoring

Load Projections

Campus Energy Infrastructure Planning:

Plant Configuration
Centralization?
Steam or Hot Water?
Plant Sizing
Load Management
CHP Potential
Grid Connections

Benchmarking and the MLM (Most Likely Maximum) Method Summary Description

- 1) Make (MLM) estimates of actual loads:
 - Calibrate with benchmarks based on actual operating conditions
 - Increase diversity when moving up from zone to plant level
- 2) Consider MLM and part loads in system selection and optimization
- 3) Identify "design" capacity for each system:
 - Document "margin of safety" for each level (e.g. zone, air handler, plant)
 - Decrease margin of safety when moving up from zone to plant level
 - "Value engineer" margins of safety

Benchmarking and the MLM (Most Likely Maximum) Method Sources of Benchmark Data

- **♦ Operating Data from Other Similar Facilities**
 - e.g. other UC/CSU campuses for UC Merced planning and design

- One Time Measurements of Loads in Similar Facilities
 - e.g. Montana State University EPICenter project

Labs 21 Benchmark Database

Benchmarking and the MLM (Most Likely Maximum) Method Advantages of the MLM Method

 Improves knowledge of actual maximum and part load operating conditions

♦ Load diversity is more fully accounted for

♦ Margins of safety are transparent and explicit

Benchmarking and the MLM (Most Likely Maximum) Method Related Method

Advanced Buildings Project*

EBenchmarkTM DRAFT version 1.0 (soon to be released)

- **♦** Prescriptive criteria for mechanical system design include:
 - Second set of calculations using "part load" conditions
 - » most likely load and/or "standard" operating conditions
 - » diversity
 - Efficient equipment and system operation at "part load"

For More Information
New Buildings Institute (www.newbuildings.org)
Jim Edelson, Project Manager
Jeffrey A. Johnson, Author

^{*}formerly referred to as "Advanced Building Guidelines"

Benchmarking and the MLM (Most Likely Maximum) Method Related Issue for System Selection

♦ High loads in lab buildings attributed to process equipment:
"Is it real or is it reheat?"

- **◆ Do modeling assumptions capture variability of loads?**
 - between zones?
 - with time?
- **♦** Is the magnitude of reheat waste reflected in analysis?
- Are the benefits of alternate systems fully recognized?

Benchmarking and the MLM (Most Likely Maximum) Method UC/CSU Benchmarking System

References

- http://www.energy2002.ee.doe.gov/Facilities.htm
- ◆ Brown, K. 2002. "Setting Enhanced Performance Targets for a New University Campus: Benchmarks vs. Energy Standards as a Reference?" *Proceedings of the 2002 ACEEE Summer Study of Energy Efficiency in Buildings*. 4:29-40. Washington, D.C.: American Council for an Energy-Efficient Economy.

Benchmarking and the MLM (Most Likely Maximum) Method UC Merced Experience

- **♦ Chiller Plant Sizing**
 - Full Success
- **♦** Boiler Plant Sizing
 - Partial Success
- **♦** Air System Design
 - Partial Success
- **♦** System Selection
 - Partial Success

Benchmarking and the MLM (Most Likely Maximum) Method UC Merced Experience

- **♦ Initial Conclusion:**
 - Success depends on the quality and applicability of the benchmark data

